Чем отличается тестостерон от гормона роста

Разница между гормоном и ферментом

Гормон и фермент — это два вещества, вырабатываемые растениями и животными, которые помогают регулировать различные функции в организме. Гормоны могут быть белками или стероидами. Ферменты в основном

Содержание:

Главное отличие — гормон против фермента

Гормон и фермент — это два вещества, вырабатываемые растениями и животными, которые помогают регулировать различные функции в организме. Гормоны могут быть белками или стероидами. Ферменты в основном белки. И гормоны, и ферменты выделяются железами у животных. Гормоны — это химические вещества, а ферменты — это биологические катализаторы. главное отличие между гормоном и ферментом является то, что гормон передает сообщения в другие части тела, вызывая специфическую клеточную реакцию в тканях и органах-мишенях в то время как Фермент представляет собой биологический катализатор, который увеличивает скорость конкретной биохимической реакции без каких-либо изменений.

1. Что такое гормон
— определение, свойства, функции, примеры
2. Что такое фермент
— определение, свойства, функции, примеры
3. В чем разница между гормоном и ферментом

Что такое гормон

Гормон — это продукт живых клеток, который циркулирует во флюидах, таких как кровь или сок, и оказывает специфическое, обычно стимулирующее влияние на активность клеток, удаленных от точки их происхождения. Синтетические вещества могут также реагировать как гормоны. Таким образом, гормоны являются химическими посланниками, которые помогают одной части тела общаться с другой частью тела, посылая сигналы. У животных они напрямую попадают в кровоток эндокринными железами и циркулируют по организму до тех пор, пока не будет найдена целевая ткань или орган. Некоторые из желез внутренней секреции в организме и их гормоны показаны в Таблица 1.

Таблица 1: Эндокринные железы и их гормоны

Эндокринная железа

Гормон роста (GH), пролактин, фолликулостимулирующий гормон (FSH) и лютеинизирующий гормон (LH)

Инсулин, глюкагон и амилин

Инсулиноподобный фактор роста 1 (IGF-1)

Первоначальный контакт гормона с определенной клеткой или тканью может инициировать важные реакции, такие как побуждение к росту или развитию клетки или ткани, инициирование и поддержание полового развития и размножения, содействие метаболизму пищи, регулирование температуры тела, регулирование настроения и когнитивное развитие. функционирование. Различные виды гормонов выделяются из организма с различными биологическими функциями. Гормоны могут быть полипептидами, аминами, терпеноидами, стероидами или фенольными соединениями. Поскольку гормоны являются чрезвычайно мощными молекулами, некоторые гормоны могут оказывать существенное влияние на организм. Гормоны уничтожаются после их действия. Поэтому их нельзя использовать повторно. Различные классы гормонов показаны в Рисунок 1.

Рисунок 1: Различные классы гормонов

Дисбаланс гормонов может возникать из-за возраста, болезней, генетических нарушений, воздействия токсинов окружающей среды и нарушения естественного ритма организма. Перепроизводство гормонов, а также недостаточное производство гормонов вызывают проблемы со здоровьем. Синтетическая гормонозаместительная терапия может быть использована при дефиците гормонов.

Что такое фермент

Фермент — это молекула белка, которая действует как биологический катализатор, регулирующий скорость биохимической реакции. Он не меняет свою структуру во время действия; следовательно, это многоразово. Все аспекты метаболизма в клетках катализируются ферментами. Большие питательные молекулы, такие как углеводы, белки и липиды, распадаются на маленькие молекулы, превращая химическую энергию в другие клеточные процессы, такие как образование макромолекул, начиная с молекулы-предшественника. Все ферменты, кроме рибозимов, являются белками. Аминокислотная последовательность полипептидной цепи определяет структуру белка, которая необходима для их действия. Структура белка меняется в зависимости от температуры или рН. После денатурирования ферменты необратимо теряют способность катализировать реакции. Дополнительные химические компоненты, такие как кофакторы, требуются под действием фермента. Эти кофакторы могут быть или коферментами, такими как витамины, или простетическими группами, такими как ионы металлов. Фермент с его активным сайтом показан в фигура 2.

Рисунок 2: Структура фермента

Поскольку ферменты можно использовать снова и снова, для катализирования реакции требуется только небольшое количество фермента. Действие ферментов в основном регулируется аллостерическим контролем. Наследственные заболевания человека, такие как фенилкетонурия и альбинизм, вызваны дефицитом фермента.

Ферменты также имеют промышленное применение, например, брожение вина, разрыхление хлеба, варка пива и сгущение сыра. В медицине ферменты используются для диагностики заболеваний, способствуют заживлению ран и уничтожают патогенные микроорганизмы.

Разница между гормоном и ферментом

Определение

Гормон: Гормон является регулирующим веществом, которое вырабатывается в организме и транспортируется в тканевых жидкостях, таких как кровь или сок, стимулируя действие определенных клеток или тканей.

Фермент: Фермент — это вещество, которое вырабатывается организмом и способно катализировать определенную биохимическую реакцию.

В Растениях и Животных:

Химия

Гормон: Гормоны — это полипептиды, амины, терпеноиды, стероиды или фенольные соединения.

Фермент: Ферменты — это белки, которые могут содержать металлические группы. Исключение составляют рибозимы, которые представляют собой РНК с каталитической активностью.

Протез Групп

Гормон: Гормоны не имеют протезных групп.

Фермент: Ферменты содержат коферменты и кофакторы в качестве протезных групп.

Молекулярный вес

Гормон: Гормоны имеют низкую молекулярную массу.

Фермент: Ферменты имеют сравнительно высокую молекулярную массу.

Диффузия через клеточную мембрану

Гормон: Гормоны диффундируют через клеточную мембрану.

Фермент: Ферменты не диффундируют через клеточную мембрану.

функция

Гормон: Гормоны — это сигналы, которые проходят между клетками или органами.

Фермент: Ферменты катализируют химические реакции, увеличивая скорость реакции.

Химическая стабильность

Гормон: Гормоны повреждаются во время процесса; следовательно, они не могут быть повторно использованы.

Фермент: Ферменты не меняются после своей функции.

регулирование

Гормон: Гормоны регулируются мозгом или внешними факторами.

Фермент: Ферменты регулируются аллостерическим контролем, изоферментами, ковалентной модификацией, протеолитической активацией и оборотом белка.

Влияние температуры и рН

Гормон: Гормоны не зависят от температуры и pH.

Фермент: Ферменты зависят от температуры и рН.

функция

Гормон: Гормоны выполняют разнообразные функции по контролю роста, развития и размножения.

Фермент: Ферменты имеют уникальные, но важные функции в организме.

Примеры

Гормон: Окситоцин, кортизол, тестостерон и эстроген у животных и абсцизовая кислота, цитокины и гиббереллины у растений являются примерами гормонов.

Фермент: Гидролазы, оксидазы и изомераза являются примерами ферментов.

У животных:

формирование

Гормон: Гормоны вырабатываются и выделяются эндокринными железами.

Фермент: Ферменты вырабатываются и секретируются экзокринными железами.

Функция в

Гормон: Гормоны транспортируются кровью к месту действия.

Фермент: Ферменты действуют либо на месте образования, либо рядом с органом.

Природа функции

Гормон: Функция гормонов зависит от положительных и отрицательных реакций обратной связи.

Фермент: Функция ферментов зависит от наличия субстрата.

болезни

Гормон: Избыточный или пониженный уровень гормонов вызывает заболевания.

Фермент: Ферменты вызывают заболевания из-за недостаточности.

переписка

Гормон: Гормоны несут сигналы к ферментам.

Фермент: Ферменты работают в зависимости от сигналов гормонов.

Вариация с возрастом

Гормон: Гормоны имеют тенденцию меняться с возрастом.

Фермент: Ферменты не меняются с возрастом.

Заключение

Гормон и фермент — это два вещества, которые вырабатываются растениями и животными и способны катализировать химические реакции. Гормоны — это небольшие химические вещества, которые имеют другое место действия, отличное от места происхождения. Они вырабатываются и выделяются эндокринными железами и циркулируют в жидкостях, таких как кровь или сок, передавая химические сигналы по всему организму. Следовательно, различные ткани и органы связываются с помощью гормонов. Ферменты — это белковые молекулы, которые катализируют биохимические реакции, происходящие в организме. Они производятся на месте действия. Ферменты имеют тенденцию изменять свою структуру в неблагоприятных условиях температуры и рН. Однако основное различие между гормоном и ферментом заключается в их механизме действия внутри организма.

Источник статьи: http://ru.strephonsays.com/difference-between-hormone-and-enzyme

Отличие гормонов от ферментов: механизмы действия

Обратите внимание, что механизм действия гормонов зависит от его химической природы и свойств – растворимости в воде или жирах. По механизму действия гормоны могут быть разделены на две группы: прямого и дистантного действия.

Гормоны прямого действия. К этой группе относятся липофильные (растворимые в жирах) гормоны – стероиды и йодтиронины . Эти вещества мало растворимы в воде и поэтому образуют в крови комплексные соединения с белками плазмы. К этим белкам относятся как специфические транспортные протеины (например, транскортин, связывающий гормоны коры надпочечников), так и неспецифические (альбумины).

Гормоны прямого действия в силу своей липофильности способны диффундировать через двойной липидный слой мембран клеток-мишеней. Рецепторы к этим гормонам находятся в цитозоле. Образующийся комплекс гормона с рецептором перемещается в ядро клетки, где связывается с хроматином и воздействует на ДНК.

В результате изменяется скорость синтеза РНК на матрице ДНК (транскрипция) и скорость образования специфических ферментативных белков на матрице РНК (трансляция). Это приводит к изменению количества ферментативных белков в клетках-мишенях и изменению в них направленности химических реакций.

Механизм влияния на клетку гормонов прямого действия.

Как вам уже известно, регуляция синтеза белка может осуществляться при помощи механизмов индукции и репрессии.

Индукция синтеза белка происходит в результате стимуляции синтеза соответствующей матричной РНК. При этом возрастает концентрация определённого белка-фермента в клетке и увеличивается скорость катализируемых им химических реакций.

Репрессия синтеза белка происходит путём подавления синтеза соответствующей матричной РНК.

В результате репрессии избирательно снижается концентрация определённого белка-фермента в клетке и уменьшается скорость катализируемых им химических реакций.

Имейте в виду, что один и тот же гормон может вызывать индукцию синтеза одних белков и репрессию синтеза других белков. Эффект гормонов прямого действия обычно проявляется только спустя 2 — 3 часа после проникновения в клетку.

Гормоны дистантного действия. К гормонам дистантного действия относятся гидрофильные (растворимые в воде) гормоны – катехоламины и гормоны белково-пептидной природы. Так как эти вещества не растворимы в липидах, они не могут проникать через клеточные мембраны.

Рецепторы для этих гормонов расположены на наружной поверхности плазматической мембраны клеток-мишеней. Гормоны дистантного действия реализуют своё действие на клетку при помощи вторичного посредника , в качестве которого чаще всего выступает циклический АМФ (цАМФ).

Циклический АМФ синтезируется из АТФ под действием аденилатциклазы:

Взаимодействие гормона с его специфическим рецептором приводит к активации G -белка клеточной мембраны. G-белок связывает ГТФ и активирует аденилатциклазу .

Активная аденилатциклаза превращает АТФ в цАМФ, цАМФ активирует протеинкиназу .

Неактивная протеинкиназа представляет собой тетрамер, который состоит из двух регуляторных (R) и двух каталитических (C) субъединиц. В результате взаимодействия с цАМФ происходит диссоциация тетрамера и освобождается активный центр фермента.

Протеинкиназа фосфорилирует белки-ферменты за счёт АТФ, либо активируя их, либо инактивируя. В результате этого изменяется (в одних случаях – увеличивается, в других – уменьшается) скорость химических реакций в клетках-мишенях.

Инактивация цАМФ происходит при участии фермента фосфодиэстеразы:

Гормоны и ферменты. Какова роль ферментов и гормонов?

Организм человека – уникальный механизм, в котором каждую секунду происходит огромное количество разных химических процессов. Все процессы взаимосвязаны между собой и обеспечивают непрерывную нормальную работу человеческого организма.

Обмен веществ, синтез, регенерация клеток, самовосстановление и множество других реакций осуществляются благодаря поступлению жизненно необходимых веществ – минералов, ферментов, фосфолипидов, витаминов, углеводов, нуклеиновым кислотам.

Все вещества принимают участие в биохимических реакциях и нормализируют работу внутренних органов и систем.

Для ускорения химических реакций необходимы ферменты. Ферменты представляют собой белковые молекулы, которые ускоряют протекание всех химических реакций.

Это катализаторы, которые способствуют перевариванию и распаду жиров, белков, сокращению мышц и проведению нервных импульсов. Также они принимают участие в обменных процессах и синтезе. Ферменты выполняют колоссальную роль для человеческого организма.

Данные вещества выполняют функцию контроля во всех биохимических процессах. Без них совершенно невозможно существование любого живого организма.

Ферменты и гормоны

Вместе с ферментами в кровь поступают гормоны. Они также играют важную роль во всех процессах, которые происходят в человеческом организме. Основная роль гормонов – правильная настройка функционирования организма.

Они необходимы для поддерживания гомеостаза и регулируют такие функции, как обмен веществ, рост, развитие, реакцию на изменение окружающей среды. Гормоны, как и ферменты, принимают участие в химических реакциях.

Благодаря гормонам в организме происходит регулирование клеточной активности и укрепление костей.

Большинство гормонов действуют через ферментные системы, являясь при этом их активаторами. Они могут быть группами ферментов. Тесная функциональная связь между гормонами и ферментами проявляется практически во всех химических процессах. Несмотря на общность биологических регуляторов, есть отличительные черты данных веществ.

Читайте также:  Продукты повышающие уровень гормонов щитовидной железы

Свою активность ферменты проявляют в клетках, где они синтезируются. Гормоны, в свою очередь, переносятся током крови к клеткам и тканям, которые ими стимулируются. Биохимическая функция гормонов значительно слабее, нежели функциональность ферментов. Но результат действия гормонов более заметен, нежели биоэффект ферментов.

Дефицит гормонов и ферментов в организме

Нехватка жизненно необходимых веществ сказываются негативно на работоспособности всего организма. При нехватке ферментов нарушаются обменные процессы в организме и все химические реакции.

При недостаче гормонов также происходят значительные сбои в работе человеческого организма.

В обоих случаях дефицит важных веществ провоцирует серьезные заболевания – сахарный диабет, грибковые болезни, болезни крови, аллергические заболевания, нарушения работы щитовидной железы и т.д.

Нехватка гормонов и ферментов может быть как врожденной, так и приобретенной. Врождённая форма передаётся внутриутробно по наследственности, заболеваниях матери, внутриутробных последствий (патологий, травм). Приобретенная форма может развиваться в любом возрасте. На нехватку жизненно необходимых веществ может повлиять различные заболевания, неправильное питание, вредные привычки.

Каждый человек, независимо от возраста должен следить за своим здоровье. Если не получается восполнить организм необходимыми вещества природным путем (употребляя продукты с их содержанием), на помощь придут биологически активные комплексы. БАДы широко используются в медицинской практике. Это универсальные добавки к пище, которые применяют в лечебных и профилактических целях.

Механизм действия ферментов. Основные отличия ферментативного катализа от неферментативного. Свойства ферментов. Понятие о проферментах. Регуляция активности ферментов. Ингибиторы ферментов: обратимые и необратимые, конкурентные. Лекарственные вещества

На первом этапе (I) происходит активация фермента путем связывания с аллостерическим центром регуляторных веществ (например, гормонов), что приводит к изменению конформации активного центра фермента и увеличению его способности связывать молекулу субстрата.

На втором этапе (II)происходит ‘узнавание’ ферментом своего субстрата (см. Специфичность действия фермента).

На третьем этапе (III) происходит формирование неактивного фермент-субстратного комплекса за счет образования гидрофобных и водородных связей между радикалами аминокислотных остатков субстратного центра (контактные площадки) и соответствующими группировками в молекуле субстрата. Молекула субстрата удерживается вблизи активного центра, но химическим преобразованиям еще не подвергается.

На четвертом этапе (IV) образуется активный фермент-субстратный комплекс. При этом происходит химическое преобразование субстрата с участием каталитического центра и кофермента (если речь идет о сложном ферменте). В результате этого молекула субстрата меняет сою пространственную конфигурацию, в ней происходит перераспределение энергии и уменьшается прочность связей.

На пятом этапе (V) фермент-субстратный комплекс становиться нестабильным и затем преобразуется в комплекс фермент-продукт, который распадается на продукты реакции и фермент. Фермент из реакции выходит в неизменном виде.

ФЕРМЕНТАТИВНЫЙ КАТАЛИЗ(биокатализ), ускорение биохим. р-ций при участии белковых макромолекул, называемых ферментами (энзимами). Основные отличия ферментативного катализа от химического. Понятие автокатализа.

  • Размер. М(ферментов)=105-107 (коллоидные частицы)
  • Высокая каталитическая активность
  • Высокая специфичность
  • Необходимость строго определенных условий
  • Влияние активаторов и ингибиторов

Общие черты ферментов и небиологических катализаторов:

  • и те, и другие катализируют только энергетически возможные реакции;
  • увеличивают скорость реакции;
  • не меняют направления реакции;
  • в ходе реакции не расходуются;
  • для обратимых процессов катализируют как прямую, так и обратную реакции, не смещая равновесия, а лишь ускоряя время его наступления.

Особые свойства ферментов:

высокая каталитическая активность. Металлы увеличивают скорость реакции в тысячи раз, а ферменты в миллионы раз. Например, уреаза ускоряет скорость реакции в 1014
раз.

Каталаза ускоряет распад H2O2 в 1 млдр. раз! 2H2O2 ®2H2O +O2. Без катализатора выделения кислорода не видно.

Металлический катализатор увеличивает скорость реакции в 1000 раз, а при добавлении каталазы – бурное вспенивание.

специфичность действия – наиболее характерная черта. Строение активного центра фермента, катализирующего реакции, различна. Структура активного центра фермента комплементарна структуре его субстрата, поэтому фермент из множества веществ присоединяет только свой субстрат – субстратная специфичность фермента.

Каждый фермент катализирует не любое превращение субстрата, а какое либо одно – специфичность пути превращения. Например, на АК ГИС действуют 2 фермента: гистидаза (отщепляет NH3) и гистидиндекарбоксилаза (отщепляет CO2).

Выделяют несколько видов специфичности:

абсолютная специфичность. Фермент действует только на один единственный субстрат. Пр.: уреаза разрушает мочевину: NH2-CO-NH2® (над стрелкой уреаза, под – вода) 2NH3+ CO2. Аргиназа катализирует распад аргинина.

групповая специфичность. Фермент действует на определённую связь в разных субстратах. Пр.: пептидазы разрывают пептидные связи [-NH-CH(R)-CO—NH-CH(R)-CO-].

Пепсин действует только на связи, образованные карбоксильной группой ароматических АК (ФЕН, ТИР, ТРИ). Эстеразы разрывают сложно-эфирную связь [-CO-NH-] в различных липидах. Гликозидазы действуют на гликозидную связь.

Действие ферментов, обладающих групповой специфичностью, позволяет организму содержать небольшое количество ферментов.

стереоспецифичность. Фермент действует на определённый стереоизомер (D- и L-, цис- и транс-). Пр.: бутен-2-диовая кислота имеет 2 стереоизомера: транс-изомер или фумаровая к-та, и цис-изомер или малеиновая кислота.

В стереоспецифичности выделяют оптическую специфичность – избирательное действие ферментов на оптические изомеры. Например, под действием ЛДГ разрушается только L-форма молочной к-ты.

Влияние температуры (правило Вант-Гоффа). При увеличении температуры на 10 градусов скорость реакции увеличивается в 1,5-2 раза. Но для фермента это правило действует только до 40 градусов, т.к.

дальше наступает тепловая денатурация фермента. Большинство ферментов в организме человека имеет оптимальную температуру 25-40 градусов [рис. графика: по оси х – температура, по у – процент активности.

Рисуем горочку, оптимум – на 37-40°С].

Повышение активности фермента при увеличении температуры объясняется увеличением кинетической энергии реагирующих молекул, что приводит к увеличению числа столкновений между молекулами.

При дальнейшем повышении температуры энергия становится чрезмерной, и внутри молекулы разрываются слабые связи – водородные, гидрофильные взаимодействия; происходит нарушение вторичной, третичной, четвертичной структуры фермента.

Ряд ферментов термостабильны, например, гликопротеины.

Влияние рН. Для поддержания третичной или четвертичной структуры фермента часто может быть необходимо наличие заряда на группе, удаленной от области связывания субстрата.

Если же заряд этой группы меняется, то может происходить частичное развертывание белковой цепи, или компактизация, или диссоциация (олигомерные белки).

Поэтому при отклонении рН от оптимального значения, фермент может потерять свою нативную структуру, в результате чего не происходит полноценного связывания активного центра с субстратом. Также при изменении рН может происходить изменение заряда на субстрате.

Пепсин – 1.5-2, амилаза слюны — 6.8-7.2, трипсин — 7.5-8.6. Для большинства ферментов оптимум рН лежит в среде, близкой к нейтральной.

Скорость ферментативной реакции прямо пропорциональна кол-ву фермента (для небиологических катализаторов такой зависимости нет). Недостаток фермента в живом организме, например при неполноценном питании, генетических нарушениях, приводит к уменьшению скорости превращения веществ и наоборот.

Ферменты являются регулируемыми катализаторами. Так под действием различных веществ (активаторов и ингибиторов) меняется скорость ферментативной реакции.

Профермент — неактивный предшественник фермента. Другие названия: зимоген, проэнзим, энзимоген. Физиологический смысл проферментов заключается в том, чтобы ткани, продуцирующие ферменты, не подвергались воздействию этих самых ферментов.

Поэтому акт продукции фермента (профермента) отделен от акта его активации — превращения в фермент.

И поэтому проферменты, в основном, встречаются у протеолитических ферментов, расщепляющих белки, в отличие отлиполитических ферментов, расщепляющих жиры.

Ферменты являются регулируемыми катализаторами. В качестве регуляторов могут выступать метаболиты, яды. Различают:

  • активаторы
  • вещества, увеличивающие скорость реакции;
  • ингибиторы
  • вещества, уменьшающие скорость реакции.

Активация ферментов. Различные активаторы могут связываться либо с активным центром фермента, либо вне его. К группе активаторов, влияющих на активный центр, относятся: ионы металла, коферменты, сами субстраты.

Активация с помощью металлов протекает по различным механизмам:

  1. металл входит в состав каталитического участка активного центра;
  2. металл с субстратом образуют комплекс;
  3. за счет металла образуется мости между субстратом и активным центром фермента.

Субстраты также являются активаторами. При увеличении концентрации субстрата скорость реакции повышается. по достижению концентрации насыщения субстрата эта скорость не изменяется.

Если активатор связывается вне активного центра фермента, то происходит ковалентная модификация фермента:

частичный протеолиз (ограниченный протеолиз). Таким образом активируются ферменты пищеварительного канала: пепсин, трипсин, химотрипсин. Трипсин имеет состояние профермента трипсиногена, состоящего из 229 АК остатков.

Под действием фермента энтерокиназы и с добавлением воды он превращается в трипсин, при этом отщепляется гексапептид. Изменяется третичная структура белка, формируется активный центр фермента и он переходит в активную форму.

фосфорилирование — дефосфорилирование. Пр.: липаза+АТФ= (протеинкиназа) фосфорилированная липаза+АДФ. Это трансферная реакция, использующая фосфат АТФ. При этом осуществляется перенос группы атомов от одной молекулы к другой. Фосфорилированная липаза является активной формой фермента.

Таким же путем происходит активация фосфорилазы: фосфорилаза B+ 4АТФ= фосфорилаза А+ 4АДФ

Также при связывании активатора вне активного центра происходит диссоциация неактивного комплекса «белок-активный фермент». Например, протеинкиназа – фермент, осуществляющий фосфорилирование (цАМФ-зависимое).

Протеинкиназа – это белок, имеющий четвертичную структуру и состоящий из 2-х регуляторный и 2-х каталитических субъединиц. R2C2+2цАМФ=R2цАМФ2+ 2С.

Такой тип регуляции называется аллостерической регуляцией (активацией).

Ингибирование ферментов. Ингибитор – это вещество, вызывающее специфическое снижение активности фермента. Следует различать ингибирование и инактивацию. Инактивация – это, например, денатурация белка в результате действия денатурирующих агентов.

По прочности связывания ингибитора с ферментом ингибиторы делят на обратимые и необратимые.

Необратимые ингибиторы
прочно связаны и разрушают функциональные группы молекулы фермента, которые необходимы для проявления его каталитической активности. Все процедуры по очистке белка не влияют на связь ингибитора и фермента. Пр.: действие фосфорорганических соединений на фермент – холинэстеразу.

Хлорофос, зарин, зоман и др. фосфорорганические соединения связываются с активным центром холинэстеразы. В результате происходит фосфорилирование каталитических групп активного центра фермента.

В следствии молекулы фермента, связанные с ингибитором, не могут связываться с субстратом и наступает тяжелое отравление.

Также выделяют обратимые игнибиторы, например прозерин для холинэстеразы. Обратимое ингибирование зависит от концентрации субстрата и ингибитора и снимается избытком субстрата.

По механизму действия выделяют:

  • конкурентное ингибирование;
  • неконкурентное ингибирование;
  • субстратное ингибирование;
  • аллостерическое.

Конкурентное (изостерическое) ингибирование – это торможение ферментативной реакции, вызванное связыванием ингибитора с активным центром фермента. При этом ингибитор имеет сходство с субстратом. В процессе происходит конкуренция за активный центр: образуются фермент-субстратные и ингибитор-ферментные комплексы. E+S®ES® EP® E+P; E+I® E.

Пр.: сукцинатдегидрогеназная реакция [рис. COOH-CH2-CH2-COOH®(над стрелкой СДГ, под ФАД®ФАДН2) COOH-CH=CH-COOH]. Истинным субстратом этой реакции является сукцинат (янтарная к-та). Ингибиторы: малоновая к-та (COOH-CH2-COOH) и оксалоацетат (COOH-CO-CH2-COOH). [рис.

фермента с 3 дырками+ субстрат+ ингибитор= комплекс ингибитора с ферментом]

Пр.: фермент холинэстераза катализирует превращение ацетилхолина в холин: (CH3)3-N-CH2-CH2-O-CO-CH3® (над стрелкой ХЭ, под – вода) CH3СOOH+(CH3)3-N-CH2-CH2-OH. Конкурентными ингибиторами являются прозерин, севин.

Неконкурентное ингибирование – торможение, связанное с влиянием ингибитора на каталитическое превращение, но не на связывание фермента с субстратом. В этом случае ингибитор может связываться и с активным центром (каталитический участок) и вне его.

Присоединение ингибитора вне активного центра приводит к изменению конформации (третичной структуры) белка, вследствие чего изменяется конформация активного центра.

Это затрагивает каталитический участок и мешает взаимодействию субстрата с активным центром. При этом ингибитор не имеет сходства с субстратом и это ингибирование нельзя снять избытком субстрата.

Возможно образование тройных комплексов фермент-ингибитор-субстрат. Скорость такой реакции не будет максимальной.

К неконкурентным ингибиторам относят:

  • цианиды. Они связываются с атомом железа в цитохромоксидазе и в результате этого фермент теряет свою активность, а т.к. это фермент дыхательной цепи, то нарушается дыхание клеток и они гибнут.
  • ионы тяжёлых металлов и их органические соединения (Hg, Pb и др.). Механизм их действия связан с соединением их с различными SH-группами. [рис. фермента с SH-группами, иона ртути, субстрата. Все это соединяется в тройной комплекс]
  • ряд фармакологических средств, которые должны поражать ферменты злокачественных клеток. Сюда же относятся ингибиторы, использующиеся в сельском хозяйстве, бытовые отравляющие вещества.

Субстратное ингибирование – торможение ферментативной реакции, вызванное избытком субстрата. Происходит в результате образования фермент-субстратного комплекса, неспособного подвергаться каталитическому превращению. Его можно снять и уменьшить концентрацию субстрата. [рис. связывания фермента сразу с 2 субстратами]

Аллостерическое ингибирование – торможение ферментативной реакции, вызванное присоединением аллостерического ингибитора в аллостерическом центре аллостерического фермента. Такой тип ингибирования характерен для аллостерических ферментов, имеющих четвертичную структуру. В качестве ингибиторов могут выступать метаболиты, гормоны, ионы металлов, коферменты.

  1. присоединение ингибитора к аллостерическому центру;
  2. изменяется конформация фермента;
  3. изменяется конформация активного центра;
  4. нарушается комплиментарность активного центра фермента к субстрату;
  5. уменьшается число молекул ES;
  6. уменьшается скорость ферментативной реакции.
Читайте также:  Пью гормоны месячные не кончаются

К особенностям аллостерических ферментов относят ингибирование по отрицателтной обратной связи. A®(E1)B®(E2) C®(E3) D (от D стрелочка к стрелке между А и В). D – метаболит, действующий как аллостерический ингибитор на фермент Е1.

Механизм действия гормонов

Расшифровка механизмов действия гормонов в организме животных представляет возможность глубже понять физиологические процессы — регуляцию обмена веществ, биосинтеза белков, роста и дифференцировки тканей.

Это важно и с практической точки зрения, в связи со все более широким применением естественных и синтетических гормональных препаратов в животноводстве и ветеринарии.

В настоящее время насчитывается около 100 гормонов, которые образуются в железах внутренней секреции, поступают в кровь и оказывают разностороннее влияние на метаболизм в клетках, тканях и органах. Трудно определить в организме такие физиологические процессы, которые не находились бы под регулирующим влиянием гормонов.

В отличие от множества ферментов, которые вызывают в организме отдельные узко направленные изменения, гормоны оказывают множественные воздействия на процессы обмена веществ и другие физиологические функции. В то же время ни один из гормонов, как правило, полностью не обеспечивает регуляцию отдельных функций.

Для этого необходимо воздействие ряда гормонов в определенной последовательности и взаимодействии. Так, например, соматотропин стимулирует процессы роста лишь при активном участии инсулина и гормонов щитовидной железы.

Рост фолликулов в основном обеспечивает фоллитропин, а их созревание и процесс овуляции осуществляется под регулирующим воздействием лютропина и т. д.

Большинство гормонов в крови связано с альбуминами или глобулинами, что предохраняет их от быстрого разрушения ферментами и поддерживает оптимальную концентрацию метаболически активных гормонов в клетках и тканях.

Гормоны оказывают непосредственное воздействие на процесс биосинтеза белков. Стероидные и белковые гормоны (половые, тройные гормоны гипофиза) в тканях-мишенях вызывают увеличение количества и объема клеток.

Другие гормоны, такие как инсулин, глюко — и минералокортикоиды, воздействуют на синтез белков опосредованно.

Первым звеном физиологического действия гормонов в организме животных являются рецепторы клеточных мембран.

В одних и тех же клетках имеются в большом количестве несколько видов; специфических рецепторов, с помощью которых они избирательна связывают молекулы различных гормонов, циркулирующих в крови.

Например, жировые клетки в своих мембранах имеют специфические рецепторы для глюкагона, лютропина, тиротропина, кортикотропина.

Большинство гормонов белковой природы в связи с крупными размерами их молекул не могут проникать в клетки, а находятся на их поверхности и, взаимодействуя с соответствующими рецепторами, влияют на обмен веществ внутри клеток.

Так, в частности, действие тиротропина связано с фиксацией его молекул на поверхности клеток щитовидной железы, под влиянием которых увеличивается проницаемость клеточных мембран для ионов натрия, а в их присутствии повышается интенсивность окисления глюкозы.

Инсулин увеличивает проницаемость оболочек клеток в тканях и органах для молекул глюкозы, что способствует снижению ее концентрации в крови и переходу в ткани. Стимулирующее действие на синтез нуклеиновых кислот и белков соматотропин оказывает также путем воздействия на мембраны клеток.

Одни и те же гормоны могут влиять на обменные процессы в клетках тканей различными путями. Наряду с изменением проницаемости клеточных оболочек и мембран внутриклеточных структур для различных ферментов и других химических веществ, под влиянием тех же гормонов может изменяться ионный состав среды вне и внутри клеток, а также активность различных ферментов и интенсивность обменных процессов.

Гормоны оказывают влияние на активность ферментов и генный аппарат клеток не непосредственно, а с помощью медиаторов (посредников). Одним из таких медиаторов является циклический 3′, 5′-аденозинмонофосфат (циклический АМФ).

Циклический АМФ (цАМФ) образуется внутри клеток из аденозинтрифосфорной кислоты (АТФ) с участием расположенного на клеточной мембране фермента аденилциклазы, которая активируется при воздействии соответствующих гормонов.

На внутриклеточных мембранах имеется фермент фосфодиэстераза, которая превращает цАМФ в менее активное вещество — 5′-аденозинмонофосфат и этим прекращает действие гормона.

При воздействии на клетку нескольких гормонов, стимулирующих в ней синтез цАМФ, реакция катализируется одной и той же аденилциклазой, но рецепторы в мембранах клеток для этих гормонов строго специфичны. Поэтому, например, кортикотропин воздействует только на клетки коры надпочечников, а тиротропин — на клетки щитовидной железы и т. д.

Детальные исследования показали, что действие большинства белковых и пептидных гормонов приводит к стимуляции активности аденилциклазы и увеличению концентрации в клетках-мишенях цАМФ, с которым связана дальнейшая передача информации гормонального воздействия при активном участии целого ряда протеинкиназ.

цАМФ выполняет роль внутриклеточного медиатора-посредника гормона, обеспечивающего повышение активности зависимых от него протеинкиназ в цитоплазме и ядрах клеток.

В свою очередь, цАМФ-зависимые протеинкиназы катализируют фосфорилирование белков рибосом, что имеет прямое отношение к регуляции синтеза белков в клетках-мишенях при воздействии пептидных гормонов.

Стероидные гормоны, катехоламины, гормоны щитовидной железы в связи с малыми размерами молекул проходят через мембрану клеток и вступают в связь с рецепторами цитоплазмы внутри клеток.

В дальнейшем стероидные гормоны в комплексе со своими рецепторами, представляющими белки кислого характера, переходят в ядро клетки.

Допускают, что пептидные гормоны, по мере расщепления гормон-рецепторных комплексов, также воздействуют на специфические рецепторы цитоплазмы, комплекса Гольджи и оболочки ядра.

Не все гормоны стимулируют активность фермента аденилциклазы и увеличение ее концентрации в клетках. Некоторые пептидные гормоны, в частности инсулин, оцитоцин, кальцитонин, оказывают на аденилциклазу тормозящее воздействие.

Физиологический эффект их действия, как полагают, обусловлен не увеличением концентрации цАМФ, а ее уменьшением. При этом в клетках, обладающих специфической чувствительностью к упомянутым гормонам, повышается концентрация другого циклического нуклеотида — циклического гуанозинмонофосфата (цГМФ).

Результат действия гормонов в клетках организма в конечном итоге зависит от воздействия обоих циклических нуклеотидов — цАМФ и цГМФ, являющихся универсальными внутриклеточными медиаторами — посредниками гормонов.

В отношении действия стероидных гормонов, которые в комплексе со своими рецепторами проникают в ядро клетки, роль цАМФ и цГМФ как внутриклеточных посредников считают сомнительной.

Многие, если не все, гормоны конечный физиологический эффект проявляют опосредованно — через изменение биосинтеза белков-ферментов. Биосинтез белков является сложным многоэтапным процессом, осуществляемым при активном участии генного аппарата клеток.

Регулирующее воздействие гормонов на биосинтез белков осуществляется в основном путем стимуляции РНК-полимеразной реакции с образованием рибосомных и ядерных видов РНК, а также информационных РНК и путем влияния на функциональную активность рибосом и другие звенья белкового обмена.

Специфические протеинкиназы в ядрах клеток стимулируют фосфорилирование соответствующих белковых компонентов и РНК-полимеразную реакцию с образованием информационных РНК, кодирующих синтез белков в клетках и органах-мишенях.

При этом в ядрах клеток осуществляется дерепрессирование генов, которые освобождаются от угнетающего действия специфических репрессоров — ядерных белков-гистонов.

Такие гормоны, как эстрогены и андрогены в ядрах клеток связываются с белками-гистонами, репрессирующими соответствующие гены, и тем самым приводят генный аппарат клеток в активное функциональное состояние. При этом андрогены влияют на генный аппарат клеток слабее, чем эстрогены, что обусловлено более активным соединением последних с хроматином и ослаблением синтеза РНК в ядрах.

Вместе с активизацией белкового синтеза в клетках осуществляется образование белков-гистонов, являющихся репрессорами активности генов, а это препятствует метаболическим функциям ядер и чрезмерному проявлению стимуляции роста. Следовательно, в ядрах клеток имеется свой механизм генетической и митотической регуляции метаболизма и роста.

В связи с влиянием гормонов на анаболические процессы в организме усиливается ретенция питательных веществ корма и, следовательно, увеличивается количество субстратов для межуточного обмена веществ, активизируются регулирующие механизмы биохимических процессов, связанные с более эффективным использованием азотистых и других соединений.

На процессы синтеза белков в клетках оказывают влияние соматотропин, кортикостероиды, эстрогены, а также тироксин. Эти гормоны стимулируют синтез различных информационных РНК и тем самым усиливают синтез соответствующих белков.

В процессах белкового синтеза важное значение принадлежит также инсулину, который стимулирует связывание информационных РНК с рибосомами и, следовательно, активирует синтез белков.

Путем активации хромосомного аппарата клеток гормоны влияют на увеличение скорости белкового синтеза и концентрации ферментов в клетках печени и других органов и тканей. Однако механизм влияния гормонов на внутриклеточный обмен изучен еще недостаточно.

Действие гормонов, как правило, тесно связано с функциями ферментов, обеспечивающими биохимические процессы в клетках, тканях и органах. Гормоны участвуют в биохимических реакциях как специфические активаторы или ингибиторы ферментов, оказывая свое влияние на ферменты путем обеспечения их связи с различными биоколлоидами.

Поскольку ферменты являются белковыми телами, воздействие гормонов на их функциональную активность проявляется прежде всего путем влияния на биосинтез ферментов и катаболических белков-коферментов.

Одним из проявлений активности гормонов является их участие во взаимодействии ряда ферментов в различных звеньях сложных реакций и процессов. Как известно, в построении коферментов определенную роль выполняют витамины. Полагают, что в этих процессах регулирующую функцию также выполняют гормоны.

Например, кортикостероиды оказывают влияние на фосфорилирование некоторых витаминов группы В.

Для простагландинов особенно важным является их высокая физиологическая активность и очень малое побочное действие. В настоящее время известно, что простагландины действуют внутри клеток подобно медиаторам и играют важную роль в реализации эффекта действия гормонов.

При этом активизируются процессы синтеза циклического аденозинмонофосфата (цАМФ), способного передавать узконаправленное действие гормонов. Возможно допустить, что фармакологические вещества внутри клеток действуют благодаря выработке специфических простагландинов.

Сейчас во многих странах изучается механизм действия простагландинов на клеточно-молекулярном уровне, так как всестороннее изучение действия простагландинов может дать возможность целенаправленно воздействовать на обмен веществ и другие физиологические процессы в организме животных.

На основании изложенного можно сделать заключение, что гормоны оказывают в организме животных сложное и разностороннее действие.

Комплексное влияние нервной и гуморальной регуляции обеспечивает согласованное течение всех биохимических и физиологических процессов. Однако в тончайших деталях механизм действия гормонов еще достаточно не изучен.

Эта проблема интересует многих ученых и представляет большой интерес для теории и практики эндокринологии, а также животноводства и ветеринарии.

Механизм действия гормонов. Роль циклазной системы в механизме действия гормонов

По механизму действия гормоны делят на два основные типа. Первый — это белковые и пептидные гормоны, катехоламины и гормоноиды.

Их молекула, подойдя к клетке- мишени, соединяется с молекулами белковых рецепторов наружной плазматической мембраны, затем с помощью медиаторов (ц АМФ, ц ГМФ, простагландинов, Са2+) оказывает влияние на ферментные системы клетки- мишени и на обмен веществ в ней. К гормонам второго типа относят стероидные и часть тиреоидных гормонов.

Их молекула легко проникает в глубь клетки- мишени через поры мембраны; взаимодействует с молекулами гликопротеидных рецепторов, локализированных в цитозоле, митохондриях на ядерной мембране, оказывая воздействие на весь клеточный метаболизм, и в первую очередь процессы транскрипции.

Механизмы действия гормонов на клетки-мишени.

В зависимости от строения гормона существуют два типа взаимодействия. Если молекула гормона липофильна, (например, стероидные гормоны), то она может проникать через липидный слой наружной мембраны клеток-мишеней.

Если молекула имеет большие размеры или является полярной, то ее проникновение внутрь клетки невозможно.

Поэтому для липофильных гормонов рецепторы находятся внутри клеток-мишеней, а для гидрофильных — рецепторы находятся в наружной мембране.

Для получения клеточного ответа на гормональный сигнал в случае гидрофильных молекул действует внутриклеточный механизм передачи сигнала. Это происходит с участием веществ, которых называют вторыми посредниками. Молекулы гормонов очень разнообразны по форме, а «вторые посредники» — нет.

Надежность передачи сигнала обеспечивает очень высокое сродство гормона к своему белку-рецептору.

Что такое посредники, которые участвуют во внутриклеточной передаче гуморальных сигналов?

Это циклические нуклеотиды (цАМФ и цГМФ), инозитолтрифосфат, кальций-связывающий белок — кальмодулин, ионы кальция, ферменты, участвующие в синтезе циклических нуклеотидов, а также протеинкиназы — ферменты фосфорилирования белков. Все эти вещества участвуют в регуляции активности отдельных ферментных систем в клетках-мишенях.

Читайте также:  Уровень гормонов при беременности показатели

Разберем более подробно механизмы действия гормонов и внутриклеточных посредников.

Существует два главных способа передачи сигнала в клетки-мишени от сигнальных молекул с мембранным механизмом действия:

  • аденилатциклазная (или гуанилатциклазная) системы;
  • фосфоинозитидный механизм.

Прежде чем выяснить роль циклазной системы в механизме действия гормонов, рассмотрим определение этой системы.

Система циклазная — это система, состоящая из содержащихся в клетке аденозинциклофосфата, аденилатциклазы и фосфодиэстеразы, регулирующая проницаемость клеточных мембран, участвует в регуляции многих обменных процессов живой клетки, опосредует действие некоторых гормонов. То есть роль циклазной системы заключается в том, что они являются вторыми посредниками в механизме действия гормонов.

Система «аденилатциклаза — цАМФ». Мембраны фермент аденилатциклаза может находиться в двух формах — активированной и неактивированной.

Активация аденилатциклазы происходит под влиянием гормон-рецепторного комплекса, образование которого приводит к связыванию гуанилового нуклеотида (ГТФ) с особым регуляторным стимулирующим белком (GS-белок), после чего GS-белок вызывает присоединение магния к аденилатциклазе и ее активацию.

Так действуют активизирующие аденилатциклазу гормоны глюкагон, тиреотропин, паратирин, вазопрессин, гонадотропин и др. Некоторые гормоны, напротив, подавляют аденилатциклазу (соматостатин, ангиотензин-П и др.).

Под влиянием аденилатциклазы из АТФ синтезируется цАМФ, вызывающий активацию протеинкиназ в цитоплазме клетки, обеспечивающих фосфорилирование многочисленных внутриклеточных белков. Это изменяет проницаемость мембран, т.е.

вызывает типичные для гормона метаболические и, соответственно, функциональные сдвиги.

Внутриклеточные эффекты цАМФ проявляются также во влиянии на процессы пролиферации, дифференцировки, на доступность мембранных рецепторных белков молекулам гормонов.

Система «гуанилатциклаза — цГМФ». Активация мембранной гуанилатциклазы происходит не под непосредственным влиянием гормон-рецепторного комплекса, а опосредованно через ионизированный кальций и оксидантные системы мембран.

Так реализуют свои эффекты натрийуретический гормон предсердий — атриопептид, тканевой гормон сосудистой стенки. В большинстве тканей биохимические и физиологические эффекты цАМФ и цГМФ противоположны.

Примерами могут служить стимуляция сокращений сердца под влиянием цАМФ и торможение их цГМФ, стимуляция сокращений гладких мышц кишечника цГМФ и подавление цАМФ.

Кроме аденилатциклазной или гуанилатциклазной систем существует также механизм передачи информации внутри клетки-мишени с участием ионов кальция и инозитолтрифосфата.

Инозитолтрифосфат — это вещество, которое является производным сложного липида — инозитфосфатида. Оно образуется в результате действия специального фермента — фосфолипазы «С», который активируется в результате конформационных изменений внутриклеточного домена мембранного белка-рецептора.

Этот фермент гидролизует фосфоэфирную связь в молекуле фосфатидил-инозитол-4,5-бисфосфата и в результате образуются диацилглицерин и инозитолтрифосфат.

Известно, что образование диацилглицерина и инозитолтрифосфата приводит к увеличению концентрации ионизированного кальция внутри клетки.

Это приводит к активации многих кальций-зависимых белков внутри клетки, в том числе активируются различные протеинкиназы.

И здесь, как и при активации аденилатциклазной системы, одной из стадий передачи сигнала внутри клетки является фосфорилирование белков, которое в приводит к физиологическому ответу клетки на действие гормона.

В работе фосфоинозитидного механизма передачи сигналов в клетке-мишени принимает участие специальный кальций-связывающий белок — кальмодулин. Это низкомолекулярный белок (17 кДа), на 30 % состоящий из отрицательно заряженных аминокислот (Глу, Асп) и поэтому способный активно связывать Са+2.

Одна молекула кальмодулина имеет 4 кальций-связывающих участка.

После взаимодействия с Са+2 происходят конформационные изменения молекулы кальмодулина и комплекс «Са+2-кальмодулин» становится способным регулировать активность (аллостерически угнетать или активировать) многие ферменты — аденилатциклазу, фосфодиэстеразу, Са+2,Мg+2-АТФазу и различные протеинкиназы.

В разных клетках при воздействии комплекса «Са+2-кальмодулин» на изоферменты одного и того же фермента (например, на аденилатциклазу разного типа) в одних случаях наблюдается активация, а в других — ингибирование реакции образования цАМФ. Такие различные эффекты происходят потому, что аллостерические центры изоферментов могут включать в себя различные радикалы аминокислот и их реакция на действие комплекса Са+2-кальмодулин будет отличаться.

Таким образом, в роли «вторых посредников» для передачи сигналов от гормонов в клетках-мишенях могут быть:

  1. циклические нуклеотиды (ц-АМФ и ц-ГМФ);
  2. ионы Са;
  3. комплекс «Са-кальмодулин»;
  4. диацилглицерин;
  5. инозитолтрифосфат.
  6. Механизмы передачи информации от гормонов внутри клеток-мишеней с помощью перечисленных посредников имеют общие черты:
  7. одним из этапов передачи сигнала является фосфорилирование белков;
  8. прекращение активации происходит в результате специальных механизмов, инициируемых самими участниками процессов, — существуют механизмы отрицательной обратной связи.

Гормоны являются основными гуморальными регуляторами физиологических функций организма, и в настоящее время хорошо известны их свойства, процессы биосинтеза и механизмы действия. Гормоны являются высокоспецифичными веществами по отношению к клеткам-мишеням и обладают очень высокой биологической активностью.

2. Механизмы действия гормонов

Гормоны оказывают влияние на клетки-мишени.

Клетки-мишени — это клетки, которые специфически взаимодействуют с гормонами с помощью специальных белков-рецепторов. Эти белки-рецепторы располагаются на наружной мембране клетки, или в цитоплазме, или на ядерной мембране и на других органеллах клетки.

Биохимические механизмы передачи сигнала от гормона в клетку-мишень.

Любой белок-рецептор состоит, минимум из двух доменов (участков), которые обеспечивают выполнение двух функций:

  1. преобразование и передачу полученного сигнала в клетку.

Каким образом белок-рецептор узнает ту молекулу гормона, с которой он может взаимодействовать?

Один из доменов белка-рецептора имеет в своем составе участок, комплементарный какой-то части сигнальной молекулы. Процесс связывания рецептора с сигнальной молекулой похож на процесс образования фермент-субстратного комплекса и может определяется величиной константы сродства.

Большинство рецепторов изучены недостаточно, потому что их выделение и очистка очень сложные, а содержание каждого вида рецепторов в клетках очень низкое. Но известно, что гормоны взаимодействуют со своими рецепторами физико-химическим путем. Между молекулой гормона и рецептором формируются электростатические и гидрофобные взаимодействия.

При связывании рецептора с гормоном происходят конформационные изменения белка-рецептора и комплекс сигнальной молекулы с белком-рецептором активируется. В активном состоянии он может вызывать специфические внутриклеточные реакции в ответ на принятый сигнал.

Если нарушен синтез или способность белков-рецепторов связываться с сигнальными молекулами, возникают заболевания — эндокринные нарушения.

Есть три типа таких заболеваний.

  1. Связанные с недостаточностью синтеза белков-рецепторов.
  2. Связанные с изменением структуры рецептора — генетических дефекты.
  3. Связанные с блокированием белков-рецепторов антителами.

Механизмы действия гормонов на клетки-мишени.

В зависимости от строения гормона существуют два типа взаимодействия. Если молекула гормона липофильна, (например, стероидные гормоны), то она может проникать через липидный слой наружной мембраны клеток-мишеней.

Если молекула имеет большие размеры или является полярной, то ее проникновение внутрь клетки невозможно.

Поэтому для липофильных гормонов рецепторы находятся внутри клеток-мишеней, а для гидрофильных — рецепторы находятся в наружной мембране.

Для получения клеточного ответа на гормональный сигнал в случае гидрофильных молекул действует внутриклеточный механизм передачи сигнала. Это происходит с участием веществ, которых называют вторыми посредниками. Молекулы гормонов очень разнообразны по форме, а «вторые посредники» — нет.

Надежность передачи сигнала обеспечивает очень высокое сродство гормона к своему белку-рецептору.

Что такое посредники, которые участвуют во внутриклеточной передаче гуморальных сигналов?

Это циклические нуклеотиды (цАМФ и цГМФ), инозитолтрифосфат, кальций-связывающий белок — кальмодулин, ионы кальция, ферменты, участвующие в синтезе циклических нуклеотидов, а также протеинкиназы — ферменты фосфорилирования белков. Все эти вещества участвуют в регуляции активности отдельных ферментных систем в клетках-мишенях.

Разберем более подробно механизмы действия гормонов и внутриклеточных посредников.

Существует два главных способа передачи сигнала в клетки-мишени от сигнальных молекул с мембранным механизмом действия

  1. аденилатциклазная (или гуанилатциклазная) системы.
  2. фосфоинозитидный механизм.

Аденилатциклазная система.

Основные компоненты: мембранный белок-рецептор, G-белок, фермент аденилатциклаза, гуанозинтрифосфат, протеинкиназы.

Кроме того, для нормального функционирования аденилатциклазной системы, требуется АТФ.

Белок-рецептор, G-белок, рядом с которым располагаются ГТФ и фермент (аденилатциклаза) встроены в мембрану клетки.

До момента действия гормона эти компоненты находятся в диссоциированнном состоянии, а после образования комплекса сигнальной молекулы с белком-рецептором происходят изменения конформации G-белка. В результате одна из субъединиц G-белка приобретает способность связываться с ГТФ.

Комплекс «G-белок-ГТФ» активирует аденилатциклазу. Аденилатциклаза начинает активно превращать молекулы АТФ в ц-АМФ.

ц-АМФ обладает способностью активировать особые ферменты — протеинкиназы, которые катализируют реакции фосфорилирования различных белков с участием АТФ. При этом в состав белковых молекул включаются остатки фосфорной кислоты.

Главным результатом этого процесса фосфорилирования является изменение активности фосфорилированного белка. В различных типах клеток фосфорилированию в результате активации аденилат-циклазной системы подвергаются белки с разной функциональной активностью. Например, это могут быть ферменты, ядерные белки, мембранные белки.

В результате реакции фосфорилирования белки могут становятся функционально активными или неактивными.

Такие процессы будут приводить к изменениям скорости биохимических процессов в клетке-мишени.

Активация аденилатциклазной систтемы длится очень короткое время, потому что G-белок после связывания с аденилатциклазой начинает проявлять ГТФ-азную активность. После гидролиза ГТФ G-белок восстанавливает свою конформацию и перестает активировать аденилатциклазу. В результате прекращается реакция образования цАМФ.

Кроме участников аденилатциклазной системы в некоторых клетках-мишенях имеются белки-рецепторы, связанные с G-белками, которые приводят к торможению аденилатциклазы. При этом комплекс «GTP-G-белок» ингибирует аденилатциклазу.

Когда останавливается образование цАМФ, реакции фосфорилирования в клетке прекращаются не сразу: пока продолжают существовать молекулы цАМФ — будет продолжаться и процесс активации протеинкиназ. Для того, чтобы прекратить действие цАМФ, в клетках существует специальный фермент — фосфодиэстераза, который катализирует реакцию гидролиза 3′,5′-цикло-АМФ до АМФ.

Некоторые вещества, обладающие ингибирующим действием на фосфодиэстеразу, (например, алкалоиды кофеин, теофиллин), способствуют сохранению и увеличению концентрации цикло-АМФ в клетке. Под действием этих веществ в организме продолжительность активации аденилатциклазной системы становится больше, т. е. усиливается действие гормона.

Кроме аденилатциклазной или гуанилатциклазной систем существует также механизм передачи информации внутри клетки-мишени с участием ионов кальция и инозитолтрифосфата.

Инозитолтрифосфат — это вещество, которое является производным сложного липида — инозитфосфатида. Оно образуется в результате действия специального фермента — фосфолипазы «С», который активируется в результате конформационных изменений внутриклеточного домена мембранного белка-рецептора.

Этот фермент гидролизует фосфоэфирную связь в молекуле фосфатидил-инозитол-4,5-бисфосфата и в результате образуются диацилглицерин и инозитолтрифосфат.

Известно, что образование диацилглицерина и инозитолтрифосфата приводит к увеличению концентрации ионизированного кальция внутри клетки.

Это приводит к активации многих кальций-зависимых белков внутри клетки, в том числе активируются различные протеинкиназы.

И здесь, как и при активации аденилатциклазной системы, одной из стадий передачи сигнала внутри клетки является фосфорилирование белков, которое в приводит к физиологическому ответу клетки на действие гормона.

В работе фосфоинозитидного механизма передачи сигналов в клетке-мишени принимает участие специальный кальций-связывающий белок — кальмодулин. Это низкомолекулярный белок (17 кДа), на 30 % состоящий из отрицательно заряженных аминокислот (Глу, Асп) и поэтому способный активно связывать Са+2.

Одна молекула кальмодулина имеет 4 кальций-связывающих участка.

После взаимодействия с Са+2 происходят конформационные изменения молекулы кальмодулина и комплекс «Са+2-кальмодулин» становится способным регулировать активность (аллостерически угнетать или активировать) многие ферменты — аденилатциклазу, фосфодиэстеразу, Са+2,Мg+2-АТФазу и различные протеинкиназы.

В разных клетках при воздействии комплекса «Са+2-кальмодулин» на изоферменты одного и того же фермента (например, на аденилатциклазу разного типа) в одних случаях наблюдается активация, а в других — ингибирование реакции образования цАМФ. Такие различные эффекты происходят потому, что аллостерические центры изоферментов могут включать в себя различные радикалы аминокислот и их реакция на действие комплекса Са+2-кальмодулин будет отличаться.

Таким образом, в роли «вторых посредников» для передачи сигналов от гормонов в клетках-мишенях могут быть:

  1. циклические нуклеотиды (ц-АМФ и ц-ГМФ);
  2. комплекс «Са-кальмодулин»;
  3. инозитолтрифосфат.

Механизмы передачи информации от гормонов внутри клеток-мишеней с помощью перечисленных посредников имеют общие черты:

  1. одним из этапов передачи сигнала является фосфорилирование белков;
  2. прекращение активации происходит в результате специальных механизмов, инициируемых самими участниками процессов, — существуют механизмы отрицательной обратной связи.

Гормоны являются основными гуморальными регуляторами физиологических функций организма, и в настоящее время хорошо известны их свойства, процессы биосинтеза и механизмы действия.

Признаки, по которым гормоны отличаются от других сигнальных молекул следующие

  • Синтез гормонов происходит в особых клетках эндокринной системы. При этом синтез гормонов является основной функцией эндокринных клеток.
  • Гормоны секретируются в кровь, чаще в венозную, иногда в лимфу. Другие сигнальные молекулы могут достигать клеток-мишеней без секреции в циркулирующие жидкости.
  • Телекринный эффект (или дистантное действие) — гормоны действуют на клетки-мишени на больщом расстоянии от места синтеза.

Гормоны являются высокоспецифичными веществами по отношению к клеткам-мишеням и обладают очень высокой биологической активностью.

Источник статьи: http://sakh-hospital.su/gipotalamus/otlichie-gormonov-ot-fermentov-mehanizmy-dejstviya.html

Рейтинг
( Пока оценок нет )