Функцию поджелудочной железы стимулируют гормоны

Функцию запасания питательных веществ выполняет гормон

Биология и медицина

Липиды: функции

Структурная функция. Липиды принимают участие в построении мембран клеток всех органов и тканей. Они участвуют в образовании многих биологически важных соединений.

Энергетическая функция. Липиды обеспечивают 25-30% всей энергии, необходимой организму . При полном распаде 1 г жира выделяется 38,9 кДж энергии, что примерно в 2 раза больше по сравнению с углеводами и белками.

Функция запасания питательных веществ. Жиры являются своего рода «энергетическими консервами». Жировыми депо могут быть и капля жира внутри клетки, и «жировое тело» у насекомых, и подкожная клетчатка, в которой накапливается жир у человека.

Функция терморегуляции. Жиры плохо проводят тепло. Они откладываются под кожей, образуя у некоторых животных огромные скопления. Например, у кита слой подкожного жира достигает 1 м. Это позволяет теплокровному животному жить в холодной воде полярного океана. У многих млекопитающих существует специальная жировая ткань, играющая в основном роль терморегулятора, своеобразного биологического «обогревателя». Эту ткань называют бурым жиром . Она имеет бурый цвет из-за того, что очень богата митохондриями красно-бурой окраски из-за находящихся в них железосодержащих белков. В этой ткани производится тепловая энергия, имеющая для млекопитающих важное значение в условиях жизни при низких температурах. Жиры выполняют еще множество различных функций в клетке и организме. Можно напомнить, что жир — поставщик так называемой эндогенной воды : при окислении 100 г жира выделяются 107 мл воды. Благодаря такой воде существуют многие пустынные животные, например песчанки, тушканчики, с этим связано и накопление жира в горбах у верблюда. Слой жира защищает нежные органы от ударов и сотрясений (например, околопочечная капсула, жировая подушка около глаза). Жироподобные соединения покрывают тонким слоем листья растений, не давая им намокать во время обильных дождей. Многие липиды являются предшественниками в биосинтезе гормонов. Например, к липидам относятся половые гормоны человека и животных: эстрадиол (женский) и тестостерон (мужской). Из ненасыщенных жирных кислот в клетках человека и животных синтезируются такие регуляторные вещества, как простагландины . Они обладают широким спектром биологической активности: регулируют сокращение мускулатуры внутренних органов; поддерживают тонус сосудов; регулируют функции различных отделов мозга, например центры теплорегуляции. Повышение температуры при ряде заболеваний связано с усилением синтеза простагландинов и возбуждением центра терморегуляции. Аспирин тормозит синтез простагландинов и таким образом понижает температуру тела.

Функции липидов:

Липиды принимают участие в выполнении следующий функций:

1. Структурная или пластическая роль липидов состоит в том, что они входят в состав структурных компонентов клетки (фосфо- и гликолипиды), ядра, цитоплазмы, мембраны и в значительной степени определяют их свойства (в нервной ткани содержится до 25% , в клеточных мембранах до 40% жиров).

2. Энергетическая функция – обеспечивает 25—30% всей энергии необходимой организму (при расщеплении 1г жира образуется 38,9 кДж.). У взрослой женщины доля жировой ткани в организме составляет в среднем 20—25% массы тела, что почти вдовое больше, чем у мужчины (соответственно 12— 14%). Следует полагать, что жир выполняет в женском организме еще и специфические функции. В частности, жировая ткань обеспечивает женщине резерв энергии, необходимый для вынашивания плода и грудного вскармливания.

3. Жиры являются источником образования эндогенной воды. При окислении 100 г жира выделяется 107 мл Н2О.

4. Функция запасания питательных веществ (жировое депо). Жиры являются своего рода «энергетическими консервами».

5.Защитная. Жиры защищают органы от повреждений (подушка около глаз, околопочечная капсула).

6. Выполняют транспортную функцию – носители жирорастворимых витаминов.

7. Терморегуляционная. Жиры предохраняют организм от потери тепла.

8. Жиры являются источником синтеза стероидных гормонов.

9. Участвуют в синтезе тромбопластина и миелина нервной ткани, желчных кислот, простагландинов и витамина D.

10. Существуют данные о том, что часть мужских половых стероидных гормонов в жировой ткани преобразуется в женские гормоны, что является основой косвенного участия жировой ткани в гуморальной регуляции функций организма.

Метаболизм жиров в организме.

Нейтральные жиры являются важнейшим источником энергии. За счет окисления образуется 50% всей энергии необходимой организму. Нейтральные жиры, составляющие основную массу животной пищи и липидов организма (10—20% массы тела), являются источником эндо­генной воды. Физиологическое депонирование нейтральных жиров выполняют липоциты, накапливая их в подкожной жировой клетчатке, сальнике, жировых капсулах различных органов – увеличиваясь в объеме. Считают, что количество жировых клеток закладывается в детском возрасте и в дальнейшем может лишь увеличиваться в размерах. Жиры, депонированные в подкожной клетчатке, предохраняют организм от потерь тепла, а окружающие внутренние органы – от механических повреждений. Жир может депонироваться в печени и мышцах. Количество жира отложенного в депо зависит от характера питания, особенностей конституции, пола, возраста, вида деятельности, образа жизни и т.д.

Фосфо- и гликолипиды входят в состав всех клеток (клеточные липиды), особенно нервных. Этот вид жиров – непременный компонент биологических мембран. Фосфолипиды синтезируются в печени и в кишечной стенке, однако только гепатоциты способны выделять их в кровь. Поэтому печень является единственным органом, определяющим уровень фосфолипидов крови.

Бурый жир представлен особой жировой тканью, располагающейся у новорожденных и грудных детей в области шеи и верхней части спины (его количество в организме 1—2% от общей массы тела). В небольшом количестве (0,1—0,2% от общей массы тела) бурый жир имеется и у взрослого человека. Особенностью состава бурого жира является огромное количество митохондрий с красновато-бурыми пигментами в которых происходят интенсивные процессы окисления, не сопряженные с образованием АТФ. Важнейшую роль в механизмах этого явления играет белок термогенин, составляющий 10—15% общего белка митохондрий бурого жира. Продукция тепла бурым жиром (на единицу массы его ткани) в 20 и более раз превышает таковую обычной жировой ткани.

У новорожденных низкая функциональная активность организма и незрелость центральных и периферических механизмов терморегуляции не обеспечивают достаточную теплопродукцию, поэтому функцию дополнительного специфического генератора тепла выполняет бурый жир. У взрослых же необходимость в дополнительном источнике тепла отпадает, так как теплопродукция обеспечивается иными, более совершенными, механизмами.

Следует отметить, что бурый жир является также источником эндогенной воды.

Высшие жирные кислоты являются основным продуктом гидролиза липидов в кишечнике. Всасывание их в кровь происходит в виде мицелярных комплексов, состоящих из жирных и желчных кислот, фосфолипидов и холестерола.

Для нормальной жизнедеятельности необходимо присутствие в пище незаменимых жирных кислот, которые не синтезируются в организме. К таким кислотам относятся олеиновая, линолевая, линоленовая и арахидоновая. Суточная потребность в них составляет 10—12 г. Линолевая и линоленовая кислоты содержатся в основном в растительных жирах, арахидоновая – только в животных. Дефицит незаменимых жирных кислот в пище приводит к замедлению роста и развития организма, снижению репродуктивной функции и различным поражениям кожи. Полиненасыщенные жирные кислоты необходимы для построения и сохранения липопротеидных клеточных мембран, для синтеза простагландинов и половых гормонов.

Жиры могут образовываться в организме из углеводов и белков при их избыточном поступлении извне. Значительное количество жиров человек получает с колбасами – от 2040%, салом – 90% , сливочным маслом – 7282% , сырами – 1550%, сметаной – 2030%.

В среднем человеку требуется 70—125 г жира в сутки, из которого 70% животного, а 30% растительного. Лишний жир откладывается в организме в определенных частях тела в виде жирового депо.

Холестерол относится к классу стеринов, включающему также стероидные гормоны, витамин D и желчные кислоты. Холестерол, поступает в организм с пищей и синтезируется в самом организме. При этом значительная его часть синтезируется в печени, где происходит и его расщепление на желчные кислоты, выделяемых в составе желчи в кишечник. Транспорт холестерола в крови осуществляется в составе липопротеидов высокой, низкой и очень низкой плотности.

Повышение фракции липопротеидов низкой плотности несет опасность развития атеросклероза вследствие их накопления в сосудистой стенке. Липопротеиды высокой плотности, напротив, способствуют удалению холестерола из клеток,

Суммарное количество жиров в организме человека составляет 1020% массы тела. Увеличение массы тела на 2025% считается предельно допустимой физиологической границей. Более чем у 30% населения экономически развитых стран масса тела превышает нормальные показатели.

Читайте также:  Что делать если повышены мужские гормоны у женщины

Лекция №3

Тема: Органические вещества, их разнообразие и значение для существования живых существ. История изучения. Малые органические молекулы — липиды. Базовые понятия и термины: органические вещества, белки, жиры, липиды, углеводы, систематизация, реакции, практическое значение. План: 1.История изучения органических веществ. Формирование биохимии.

2.Направления исследований современной биохимии.

3. Общая характеристика органических веществ. Классификация.

4.Липиды. Общая характеристика. Классификация.

5.Функции простых и сложных липидов.

1.История изучения органических веществ. Формирование биохимии. Химический состав живых организмов, вещества, входящие в их состав, и химические процессы, которые происходят в организмах, изучает наука биохимия.

К началу XIX века существовала общая уверенность, что жизнь не поддается физическим и химическим законам, характерным неживой природе. Считалось, что только живые организмы способны производить молекулы, характерные для них. Только в 1828 году Фридрих Велер опубликовал работу о синтезе мочевины, выполненный в лабораторных условиях, доказав, что органические соединения могут быть созданы искусственно. Это открытие нанесло серьезное поражение ученым-виталистам, которые исключали такую ​​возможность.

К тому времени уже существовал фактический материал для первичных биохимических законов, который накапливался в связи с практической деятельностью людей, направленной на изготовление еды и вина, получения пряжи из растений, очистки кожи от шерсти с помощью микробов, на изучение состава и свойств мочи и других выделений здорового и больного человека. После работ Велера постепенно начали устанавливаться такие научные понятия, как дыхание, брожение, ферментация, фотосинтез. Изучение химического состава и свойств соединений, выделенных из животных и растений, становится предметом органической химии (химии органических соединений). Начало биохимии также ознаменовался открытием первого фермента диастазы (сейчас известного как амилаза) в 1833 году Ансельмом Паеном. Сам термин «биохимия» был впервые предложен в 1882 году, однако считается, что широкое применения он приобрел после работ немецкого химика Карла Нойберга в 1903 году. К тому времени эта область исследований была известна как физиологическая химия. После этого времени биохимия быстро развивалась, особенно начиная с середины XX века, прежде всего благодаря разработке новых методов, таких как хроматография, рентгеноструктурный анализ, МР-спектроскопия, радиоизотопное мечение, электронная и оптическая микроскопия и, наконец, молекулярная динамика и другие методы вычислительной биологии. Эти методы позволили открыть и детального анализировать многие молекулы и метаболические пути клетки, такие как гликолиз и цикл Кребса.

2. Направления исследований современной биохимии. Сейчас биохимические исследования проводятся в трех направлениях, которые сформированы Майклом Шугаром. Биохимия растений исследует биохимию преимущественно автотрофных организмов, в том числе такие процессы как фотосинтез. Общая биохимия включает исследование, как растений, так и животных, и человека, а медицинская биохимия специализируется на биохимии человека и отклонениях биохимических процессов от нормы, в частности, в результате болезней. Белки были выделены в отдельный класс биологических молекул в XVIII веке в результате работ французского химика Антуана де Фуркруа и других ученых, у которых было отмечено свойство белков коагулировать при нагревании или под действием кислот.

К концу XIX века уже было исследовано большинство аминокислот, входящие ​​в состав белков. В 1894 году немецкий физиолог АльбрехтКоссель выдвинул теорию, что аминокислоты являются главными структурными элементами белков. В начале XX века немецкий химик Эмиль Фишер экспериментально доказал, что белки построены из остатков аминокислот, соединенных пептидными связями. После 1926 года также стала понятной центральная роль белков в организмах, когда американский химик Джеймс Самнер (впоследствии — лауреат Нобелевской премии) показал, что фермент уреаза также является белком. Идея о том, что вторичная структура белков образуется в результате формирования водородных связей между аминокислотами, была высказана Уильямом Астбери в 1933 году, но Лайнус Полинг считается первым ученым, который смог успешно предсказать вторичную структуру белков. Позже Волтер Каузман, полагаясь на работы Кая Линдерстрем-Ланга, внес весомый вклад в понимание законов образования третичной структуры белков и роли в этом процессе гидрофобных взаимодействий. В 1949 году Фред Сэнгер определил аминокислотную последовательность инсулина, продемонстрировав таким способом, что белки — это линейные полимеры аминокислот, а не разветвленные (как у некоторых сахаров) цепи, коллоиды или циклолы.

Особенностью исследований в начале XXI века является одновременное получение данных о белковом составе целых клеток, тканей или организмов – протеомика.

3. Общая характеристика органических веществ. Классификация. Основные органические вещества живых организмов можно разделить на следующие большие группы, как липиды, белки, углеводы и нуклеиновые кислоты и АТФ.

Органические соединения — это вещества, имеющие скелеты из ковалентно связанных атомов углерода способные присоединять атомы кислорода, Гидрогену. Изучением углерода и его соединений занимается отдельная отрасль химии — органическая химия. Карбон — один из самых уникальных элементов, который встречается в природе.

Карбон обладает уникальными свойствами, благодаря которым он является основным компонентом подавляющего большинства органических соединений:

1) Его атомы сравнительно малые и атомная масса невелика;

2) Способен образовывать четыре прочные ковалентные связи;

3) Образует углерод — углеродные связи, создавая, таким образом, длинные углеродные скелеты молекул в виде цепей или колец;

4) Образует кратные двойные связи;

Образует ковалентные связи с другими атомами (O, H, N, и др..). Это уникальное сочетание свойств обеспечивает чрезвычайное разнообразие органических молекул.

Чем еще определяется разнообразие органических соединений?

Она зависит от функциональных групп, входящих в эти соединения. Функциональная группа — это часть молекулы, имеет определенный химический состав и функции.

Органические вещества делятся на:

1) малые органические молекулы (мономеры): аминокислоты, глицерин, жирные кислоты, моносахариды, нуклеотиды;

2) макромолекулярные молекулы (биополимеры): белки, полисахариды, нуклеиновые кислоты.

Макромолекулы построены из мономеров. Это относительно крупные структуры с высокой молекулярной массой. (Так, молекулярная масса белков составляет 5000 -1000000)

На биополимеры приходится около 90% сухой массы клетки.

Все эти вещества обычно представлены очень большими молекулами, в состав которых входят тысячи, десятки тысяч или даже миллионы атомов. Их мы можем назвать биополимерами, потому что состоят эти огромные молекулы из небольших компонентов, которые собраны в составе единой структуры.

Так, молекулы нуклеиновых кислот состоят из отдельных нуклеотидов, молекулы белков — из аминокислот, а молекулы олиго-и полисахаридов — измоносахаридов. Большинство липидов образуются из глицерина и жирных кислот. Помимо образования макромолекул малые биологические молекулы выполняют и различные специальные функции.

Особуюгруппу органических веществ составляют биологически активные вещества, ферменты, гормоны, витамины. Они разнообразны по строению и способны влиять на обмен веществ и энергии в организме.

4. Липиды. Общая характеристика. Классификация.Липиды — это жироподобные или жирные вещества, которые могут быть экстрагированные из клеток с помощью неполярных растворителей (например, хлороформом). В состав молекул большинства липидов входят жирные кислоты и спирты. Липиды — это органические соединения с различной структурой, но общими свойствами: они нерастворимыми в воде, хорошо растворимы в неполярных органических растворителях. В живых организмах содержатся различные липиды, в частности фосфолипиды, жиры и стероиды т.д.. Из липидов распространенными и наиболее известными являются жиры. Содержание жира в клетке обычно невелико: 5-10% (от сухого вещества). Однако существуют клетки, в которых около 90% жира. У животных такие клетки содержатся, например, под кожей. Жир содержится в молоке всех млекопитающих. У некоторых растений большое количество жира сосредоточено в семенах и плодах (20-60), например, у подсолнечника, конопли, грецкого ореха. По химической структуре жиры являются сложными эфирами трёхатомного спирта глицерола и высокомолекулярных жирных кислот. Липиды традиционно делятся на простые и сложные. Простые состоят только из остатков жирных кислот (или альдегидов) и спиртов. Сложные липиды являются комплексом простых липидов с белками, углеводородами или производными фосфорной кислоты. Жирными называют карбоновые кислоты, содержащие в составе своейуглеродной «цепочки» от четырех до двадцати четырех атомов углерода. Хотя они могут случаться у живых организмов и в свободном виде, но большинство представлены как компоненты липидов. Особенности строения этих кислот обеспечивают их важными для живых организмов свойствами. Они состоят из карбоксильной группы и углеводородного «хвоста». Карбоксильная группа позволяет реагировать со спиртами, образуя липиды, а углеводородный «хвост» обеспечивает гидрофобные свойства. Жирные кислоты могут быть насыщенными (имеют только одинарные связи между атомами углерода) или ненасыщенными (могут иметь один или несколько двойных связей между атомами углерода). Оба эти типа жирных кислот находятся в природных липидах. Из насыщенных жирных кислот в живых организмах часто содержится пальмитиновая, стеариновая или лауриновая. Из ненасыщенных жирных кислот в живых организмах часто содержится олеиновая, линолевая, линоленовая и арахидоновая (для человека последняя кислота является незаменимой). Чаще простые липиды жирные кислоты образуются из трехатомного спирта глицерина. Эту группу соединений называют триглицеридами. Группа восков образуется вследствие взаимодействия жирных кислот с одноатомными спиртами. Кроме того, в группу простых липидов включают стероиды и терпены, которые являются производными изопреновых и не содержат в своем составе жирных кислот. Жиры.

Читайте также:  Что такое ттг в анализе крови на гормоны и что делать если он повышен

Триацилглицеролы — это природные органические соединения, которые являются посредником глицерола и жирных кислот. Триацилглицеролы являются формой накопления жиров в организме и одним из основных источников энергии, это самые распространенные из природных липидов.

Сравнение жиров:

По происхождению:
Животные Растительные
По физическому составу: Твердые жидкие
С высокой tпл. и низкой tпл.
Насыщенные жирные к-ты и не насыщенные

Калорийность жиров почти вдвое выше калорийности углеводов, поэтому они откладываются в организме животных как запасное питательное вещество. Жиры также служат для теплоизоляции и обеспечивают плавучесть. Масла чаще всего накапливаются в растениях (семена подсолнуха, кокосовой пальмы и др.). Фосфолипиды. Особенно важными жироподобными веществами являются фосфолипиды. Они, как и настоящие жиры, является эстерами глицерола и жирных кислот, но от настоящих жиров они отличаются тем, что содержат остаток ортофосфатнои кислоты. Фосфолипиды благодаря своему строению способны образовывать билипидный слой, являющийся основой биологических мембран. Из всех стероидов в организме человека в наибольшем количестве содержится холестерол. Стероидами также являются половые гормоны (эстрогены, прогестерон, тестостерон), витамин В. Воски используются животными и растениями как водоотталкивающие покрытия (пчелиные соты, покрытие перьев птиц, внешний покров листьев, плодов и семян некоторых растений) 5.Функции липидов:

Липиды очень широко представлены в живой природе и играют чрезвычайно важную роль в клетке и организме.

Строительная функция(структурная). Липиды участвуют в построении мембран всех органов и тканей, а также в образовании многих биологически важных соединений. Энергетическая функция. Липиды обеспечивают 25-30% всей энергии, необходимой для организма. В процессе полного распада 1 г жира выделяется 38,9 кДж энергии. Функция запасания питательных веществ. Жиры являются своеобразными «энергетическимиконсервами». Жировыми депо могут быть и капля жира внутри клетки и «жировое тело» у насекомых, и подкожная клетчатка у человека, в которой накапливается жир. Теплоизоляционная функция. Жиры плохо проводят тепло. Они откладываются под кожей, образуя в некоторых животных огромные скопления. Например, у кита слой подкожного жира достигает 1 м. Это позволяет теплокровным животным жить в холодных полярных водах. Защитная функция. Слой жира защищает нежные органы от ударов и сотрясений (например, околопочечная капсула, жировая подушка вокруг глаза). Жироподобные соединения покрывают тонким слоем листья растений, не давая им намокать во время сильных дождей. Гормональная функция(регуляторная). Большинство липидов являются предшественниками гормонов. Например, к липидам относятся половые гормоны человека и животных: эстрадиол (женский гормон) и тестостерон (мужской гормон). У многих млекопитающих существует специальная жировая ткань, котораявыполняет преимущественно роль терморегулятора, своеобразного биологического «обогревателя». Эту ткань называют «бурым жиром». В ней вырабатывается энергия, имеющая для млекопитающих большое значение в условиях жизни при низких температура. Узнайте больше:

Из ненасыщенных жирных кислот в клетках человека и животных синтезируются такие регуляторные вещества, как простагландины. Они обладают широким спектром биологической активности: регулируют мускулатуры внутренних органов, поддерживают тонус сосудов, регулируют функции различных отделов мозга, например, центра терморегуляции. Повышение температуры тела при некоторых заболеваниях связано с усилением синтеза простагландинов и возбуждением центра терморегуляции. Широко применяемый в медицине аспирин тормозит синтез простагландинов и таким образом снижает температуру тела. Жир может быть поставщиком, так называемой эндогенной воды. Из 1 кг жира во время его окисления образуется около 1,1 л воды. Благодаря этой воде существует немало пустынных животных, например, песчанки, тушканчики. Жир, который накапливается в горбах верблюда, также является источником воды. Контроль знаний и умений:

Дать ответы на вопросы:

1.Какие группы органических веществ вы знаете? 2.Какие органические вещества называют моносахаридами, белками, липидами? 3.Какие бывают липиды? Которые их свойства? Функции? 4.Дайте толкование понятия биохимия. Домашние задание:пересказ конспекта, Лек. № 3

Не нашли то, что искали? Воспользуйтесь поиском:

Функцию запасания питательных веществ выполняет гормон

Липиды – небольшие молекулы, их молекулярная масса составляет несколько сотен дальтон. Обычно в молекулах липидов имеются и гидрофильные, и гидрофобные группы, но в целом липиды имеют гидрофобные свойства. Липиды плохо растворимы в воде, зато хорошо растворяются в органических растворителях (спирте, ацетоне, хлороформе). Исторически липиды были выделены в отдельный класс веществ именно по этому признаку – как соединения, растворимые не в воде, а в менее полярных органических растворителях. К липидам относятся такие соединения, как фосфолипиды, нейтральные жиры, стероиды и воска. В живых организмах липиды выполняют несколько важных функций.

Все клетки отграничены от окружающей среды наружной мембраной, которая примерно наполовину (по массе) состоит из липидов и наполовину – из белков. Способность липидов выполнять структурную функцию не ограничивается клеточным уровнем: медоносная пчела лепит свои соты из воска, из воскоподобных веществ состоит и кутикула наземных растений – тонкий слой на поверхности листьев и стеблей, уменьшающий испарение.

Клетка может окислять липиды и использовать выделяющуюся энергию для своих нужд. При окислении нейтральных до углекислого газа и воды жиров выделяется много энергии – около 9,3 килокалорий на грамм. Жиры часто служат запасными питательными веществами. У высших позвоночных животных для этой цели используется особая ткань – жировая клетчатка. У растений запасы жиров нередко встречаются в семенах.

Важнейшими регуляторами физиологических процессов в организме являются гормоны. Среди них встречаются соединения различной структуры. Особую группу составляют т. н. стероидные гормоны, которые относятся к классу липидов. Производными жирных кислот являются важные регуляторы клеточных функций простагландины (их иногда называют тканевыми гормонами).

Липиды могут выполнять и ряд других функций. Так, накопление липидов организмами планктона и нектона уменьшает их удельный вес и облегчает плавание в толще воды (такой механизм используют также акулы). Подкожная жировая клетчатка может служить механической защитой для внутренних органов, а у теплокровных животных она является теплоизолятором.

В молекулах фосфолипидов присутствуют различные по химическим свойствам составные части: «головка» и два «хвоста». В состав головки входят остатки глицерина, фосфорной кислоты и спирта. «Головка» гидрофильна и электрически заряжена, вода охотно с ней взаимодействует. «Хвосты» представляют собой остатки жирных кислот, содержащие множество СН2-групп. Поляризация связи С–Н очень слабая, так что «хвосты» вполне гидрофобны, и они «стремятся» избежать взаимодействия с водой.

В состав фосфолипидов входят как насыщенные жирные кислоты, не содержащие двойных связей, так и ненасыщенные. Очень распространенными жирными кислотами являются пальмитиновая , стеариновая , олеиновая , пальмитоолеиновая . В состав одной молекулы фосфолипида обычно входят остатки разных жирных кислот, причем ненасыщенная жирная кислота обычно располагается ближе к фосфату. Природные липиды содержат в основном цис-изомеры ненасыщенных жирных кислот. Транс-изомеры образуются при искусственной переработке растительных жиров – например, при получении маргарина. В последнее время выяснилось, что потребление транс-изомеров жирных кислот вредно для здоровья: оно увеличивает риск возникновения атеросклероза и онкологических заболеваний.

Если молекулы фосфолипидов поместить на поверхность водного слоя, то, очевидно, что гидрофильные «головки» будут обращены в воду, а гидрофобные «хвосты» будут выталкиваться из воды. Образуется монослой – поверхностная пленка толщиной в одну молекулу. Если же «затолкать» молекулы фосфолипидов в воду целиком, то тогда «головки» будут обращены к воде (наружу), а «хвосты» – от воды (внутрь). Такие небольшие скопления молекул называются мицеллами.

Читайте также:  Ттг гормоны от чего и как лечить

К образованию мицелл более склонны не фосфолипиды, а жирные кислоты, имеющие только один гидрофобный «хвост» – мицеллы получаются, например, при растворении мыла в воде

Фосфолипиды чаще образуют другую структуру – липидный бислой. В составе бислоя молекулы фосфолипидов располагаются в два ряда: «головки» будут обращены к воде, а «хвосты» упрятаны внутрь. Липидный бислой составляет основу всех клеточных мембран – мембрана представляет собой «липидное озеро», в котором плавают белки.

Липидный бислой непроницаем для заряженных ионов – они не могут проникнуть через его гидрофобную центральную зону. Для того чтобы транспортировать ионы через мембрану, в клетке имеются специальные белки-переносчики. Через бислой не могут пройти крупные молекулы – белки, полисахариды, нуклеиновые кислоты. Липидный бислой проницаем для небольших гидрофобных молекул, а также для совсем мелких полярных, но не заряженных – таких как Н2О, СО2, а также О2.

Нейтральные жиры представляют собой эфиры глицерина и остатков трех жирных кислот. Они более гидрофобны, чем фосфолипиды, и располагаются внутри клетки в виде нерастворимых жировых включений.

В состав жиров также могут входить остатки насыщенных и ненасыщенных жирных кислот. Первые преобладают в животных жирах, а вторые – в растительных. Насыщенные жирные кислоты имеют более высокую температуру плавления, поэтому подсолнечное масло при комнатной температуре является жидкостью, а сливочное масло и говяжий жир – твердыми телами. В состав жиров сливочного масла входят насыщенные кислоты с меньшим числом углеродных атомов, чем у жиров говяжьего жира, поэтому сливочное масло плавится при меньшей температуре. Как и молекулы фосфолипидов, молекулы нейтральных жиров обычно содержат остатки разных жирных кислот.

Жирные кислоты могут синтезироваться из углеводов и аминокислот, из-за этого ожирение наступает при избыточном питании не только жирами, но и другими продуктами.

Еще один класс липидов – стероиды. Это небольшие гидрофобные молекулы, производные холестерина. Они содержат в своем составе систему связанных углеводородных колец – три шестиатомных и одно пятиатомное. Стероидами являются такие гормоны надпочечников, как глюкокортикоиды (например, кортизол), играющие важнейшую роль в развитии стресса, и минералокортикоиды (альдостерон), уменьшающие выведение почками воды и ионов натрия из организма. К стероидным относятся мужские и женские половые гормоны (тестостерон и эстрадиол), а также прогестины (прогестерон).

В печени из холестерина синтезируются желчные кислоты, которые затем поступают в желчь. Эти соединения содержат как гидрофильные, так и гидрофобные группы. В водной среде они легко образуют мицеллы. В просвете кишечника в эти мицеллы включаются молекулы жиров из съеденной пищи – сами по себе нейтральные жиры почти нерастворимы, а в составе мицелл образуют эмульсию и становятся доступными для действия пищеварительных ферментов.

Сам холестерин – не гормон, а необходимый компонент клеточных мембран у высших организмов; у бактерий он встречается редко.

Интересен механизм действия стероидных гормонов на клетки-мишени. Стероиды – это небольшие гидрофобные молекулы, они легко проникают через наружную мембрану клетки. Белки-рецепторы, связывающие эти гормоны, расположены в цитоплазме. После связывания со стероидом белок-рецептор активируется и идет из цитоплазмы в ядро. В ядре гормон-рецепторный комплекс связывается с ДНК и регулирует активность некоторых генов (ДНК и гены рассматриваются на уроке 8). Каждый класс стероидных гормонов имеет свои собственные рецепторы и регулирует только определенные гены.

Так, глюкокортикоиды – гормоны стресса – активируют различные гены, отвечающие за обеспечения организма энергией, и угнетают гены, отвечающие за накопление запасных питательных веществ. Ведь стрессовая реакция служит для мобилизации организма на борьбу или бегство, а тут уж не до запасания. Минералокортикоиды активируют гены фермента Na + /K + –АТФазы, который возвращает в кровь из первичной мочи натрий, а вместе с ним и воду.

Еще одна группа важнейших регуляторов жизнедеятельности организма – это простагландины. Они образуются из арахидоновой кислоты – одной из полиненасыщенных жирных кислот. Сперва простагландины были обнаружены в предстательной железе – простате – с чем и связано их название, однако вскоре они были найдены в самых разных клетках, тканях и органах.

Простагландины иногда называют тканевыми гормонами. Дело в том, что в организме у них довольно короткое время жизни, поэтому они действуют локально, в том же органе, в котором и вырабатываются.

Существует много разных классов простагландинов, они обладают различным, иногда прямо противоположным физиологическим действием. Так, простагландин Е2 расширяет стенки кровеносных сосудов, увеличивает их проницаемость, это вещество вырабатывается при воспалении и вызывает многие его симптомы. Простагландин F2 действует на сосуды противоположным образом – сужает и уменьшает проницаемость – он обладает противовоспалительным действием. Однако при беременности эти соединения действуют одинаково, усиливая сокращения гладкой мускулатуры матки.

Простагландин I2 (простациклин) препятствует агрегации тромбоцитов и тормозит свертывание крови, тогда как тромбоксан А2 (очень похожее на простагландины вещество, тоже синтезируемое из арахидоновой кислоты) активирует эти два процесса.

Еще один класс производных арахидоновой кислоты – лейкотриены – играют ключевую роль в развитии такой тяжелой болезни как бронхиальная астма. Они вызывают сокращение гладких мышц дыхательных путей, что приводит к спазму бронхов и неукротимому кашлю, без специальной медицинской помощи больной может задохнуться и умереть.

Широко распространенное лекарство аспирин угнетает синтез простагландинов. Оно обладает противовоспалительным и жаропонижающим действием.

В организме человека всасывание липидов происходит в тонком кишечнике. Жирные кислоты и глицерин поступают из просвета кишки в клетки эпителия кишечника. Там из них синтезируются нейтральные жиры, которые в комплексе со специальными белками и холестерином образуют особые частицы диаметром 0,1–1 мкм – хиломикроны. Хиломикроны поступают из клеток кишечника в лимфатическую систему, затем в кровоток и разносятся по всему организму.

Кроме хиломикронов, перенос жиров от одной ткани к другой осуществляют т. н. липопротеины очень низкой плотности (ЛПОНП). Они образуются в печени – там синтезируется и белковая, и жировая часть этих комплексов, а к другим тканям переносятся с кровотоком. ЛПОНП также содержат холестерин. После усвоения жиров различными тканями организма липопротеиновые частицы, содержащие холестерин, становятся т. н. липопротеинами низкой плотности (ЛПНП). На поверхности почти всех клеток человеческого организма есть специальные белки–рецепторы ЛПНП. Когда ЛПНП связываются с этими рецепторами, клетка поглощает их, внутри клетки холестерин освобождается и используется для клеточных нужд.

При развитии опасного заболевания, атеросклероза, холестерин начинает откладываться на стенках кровеносных сосудов, образуя т. н. склеротические бляшки. Это может привести к закупорке и повреждению сосудов. Больным атеросклерозом часто назначают диету с пониженным содержанием холестерина, однако этот липид в значительных количествах вырабатывается в самом организме, так что такая диета не может предотвратить развитие заболевания.

Механизм развития атеросклероза изучен далеко не полностью. По-видимому, на первом этапе происходит самопроизвольное окисление жирных кислот, содержащихся в ЛПНП. Такие «испорченные» липопротеины откладываются на стенках кровеносных сосудов, что вызывает прикрепление к измененной сосудистой стенке защитных клеток – макрофагов. Макрофаги, прикрепленные к стенке сосуда, начинают активно поглощать из плазмы крови холестерин, причем не через рецепторы ЛПНП, а через совсем другие, т. н. рецепторы-мусорщики. Макрофаг оказывается напичканным холестерином, он и дает начало склеротической бляшке. Известно, что у людей с наследственными дефектами рецепторов ЛПНП атеросклероз развивается уже в детском возрасте.

Запасание триглицеридов происходит в специальной ткани – жировой клетчатке. При голодании в клетках этой ткани происходит распад триглицеридов, и свободные жирные кислоты переносятся к другим органам белком плазмы крови – сывороточным альбумином.

Липиды – небольшие, довольно гидрофобные молекулы, выполняющие в клетке несколько важнейших функций – структурную, энергетическую, регуляторную. При окислении жиров выделяется много энергии, что делает их особенно удобным запасным питательным веществом. Фосфолипиды образуют в водной среде бислой, который служит основой всех биологических мембран. Стероидные гормоны регулируют целый ряд функций организма – стрессовую реакцию, водный баланс, половую функцию.

Источник статьи: http://mupvirc.ru/gormony/funktsiyu-zapasaniya-pitatelnyh-veschestv-vypolnyaet-gormon/

Рейтинг
( Пока оценок нет )